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Abstract 

For a given undirected graph G, a routing R is a collection of elementary paths 
connecting every pair of vertices in G. The load ~ ( G, R, v) of a vertex v in the routing 
R is the number of paths of R for which v is an interior vertex. The forwarding index 
~ ( G, R) of the graph G respect to the routing R, is defined as the maximum of the 
loads ~ ( G, R, v) for all vertex v of G. The forwarding index ~ ( G) of the graph G, 
is the minimum of the forwarding indices ~( G, R) taken over a11 possible routings R. 
In this paper, we develop an algorithm based in simulated annealing to compute the 
forwarding index of graphs. 

Experimental results show that this algorithm behaves well, finding optimal solu­
tions in most cases and performs better than a genetic algorithm suited for the problem. 

Keywords: Heuristic Algorithms, Forwarding Index, Simulated Annealing, Genetic 
Algorithm. 
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1 Introd uction 

Let G(V, E) bea simple connected graph on n vertices. V(G) denotes the vertex set of G. 

A routing of G is a set R = { Rxy : u, v E V ( G), u i= v} of elementary paths connecting each 

ordered pair (u, v) (thus, Ruv is not necessarily the same as Rvu)· If all the paths Ruv of R 

are shortest paths from u to v, we say that we ha ve a routing of shortest paths and denote 

it by Rm· 

Usually, a communication network is defined as a graph: vertices and edges represent 

nodes and links of the network. Also, since the purpose of a network is communicating data, 

it is necessary to provide information about how to interconnect any two nodes. This way, a 

network can be defined as a pair (G, R), where Gis the associated graph and Risa routing 

that specifies the way to connect each node pair. Chung et al. introduced the notion of 

forwarding index, as a parameter that measure in sorne sense, the load or congestion of a 

network [4]. 

The load ~(G, R, v) of a vertex v in the routing R is defined as the number of paths of R 

for which v is an interior vertex. The forwarding index of the pair (G, R) is the maximum 

number of paths of R going through any vertex v in G and is denoted ~(G, R): 

~(G,R) = max ~(G,R,v) 
vEV(G) 

The forwarding index of G, denoted by ~(G), is defined as the minimum ofthe forwarding 

indices ~(G,R) taken over all possible routings: 

~(G) = min~(G, R) 
R 
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The forwarding index by routing of shortest paths. denoted by c;m(G), is defined as the 

minimum of the forwarding índices c;(G, Rm) taken over all possible routings of shortest 

paths: 

c;(G) = min~(G, Rm) 
Rm 

The paper is organized as follows. Section 2 presents sorne theoretical results about 

forwarding índices. In section 3, we propase a simulated annealing algorithm to solve the 

forwarding index and forwarding index by routing of shortest paths. To evaluate the solution 

quality of the algorithm, we test it in sorne specific graphs with known forwarding índices. 

The result of this evaluation is presented in section 4. Section 5 presents an experimental 

comparision betvveen the simulated annealing algorithm and a genetic algorithm proposed 

by Barráez and Domínguez [3]. We end in section 6 with a summary of the main results and 

topics for future work. 

2 Sorne theoretical results 

The forwarding index problem is NP-complete; no algorithm is known to solve the problem 

in polynomial time, except for the particular case for routing of shortest paths for graphs 

of diameter 2 [2, 5]. Howe\·er, among many, the following equalities and bounds are well 

known: 

Proposition 2.1 (Chung, Coffman, Reiman, Simon [4]) Let G be a connected graph 

of arder n. Then 
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where S (u, v) denotes the length of a shortest path between u and v. 

Proposition 2.2 (Heydemann, Meyer, Sotteau [5]) For any cycle Cn of length n, n 2: 3, 

Proposition 2 (Heydemann, l\1eyer, Sotteau [5]) If is a wheel n, we 

ha ve 

(i) ~m(Wn-d = n 2 - 7n + 6 for n 2: 7 

{ii) (n- 1)(1- ~) ~ ~(Vfln-l) ~ (n~3 ) 2 

Proposition 2.4 (Heydemann, Meyer, Sotteau (5]) If Qp is the p-cube of arder n = 2P, 

then 

3 Description of the algorithm 

Simulated annealing is an approach has demonstrated to useful to 

difficult of this to 



set 

m 

l. Select an initia1 solution S and compute e= eost(S). Compute an upper 

2. Choose an initial temperature T > O so that in vvhat follows the 
approximately equal to IN IT P ROE. 

3. Set freezeeount = O 

4. \Yhile freezeeount < FREEZELIM do 

-!.1 Set changes=trials=O 

4.2 While trials < SIZEFACTOR ·N and ehanges < CUTOFF ·N do 

4.2.1 Set trials = trials + 1; 
4.2.2 Generate a random neighbor S' of S and compute e' = eost(S') 

4.2.3 Let L1 = e' - e 
4.2.4 If Ll. ::::; o 

Set ehanges = ehanges + 1 
Set S = S' and e = e' 
If S' is feasible and eost(S') < e* then set S* = S' and e* = eost(S') 

4.2.5 If L1 > o 
Choose a random number r in [0,1]. 
If r ::::; exp-"-'/T then set ehanges = ehanges + 1 and set S= S' ande= e' 

4.3 Set T = TEMPFACTOR · T 
If e* '.Yas changed during4.2, set freezeeount = 0: 
If ehanges/trials < MINPERCENT, set freezeeount = freezeeount + 1 

5. Output S* as the solution 

Figure 1: The generic simulated annealing algorithm 

G be a connected graph of n. solution is any 

n(n- 1) elementary are neighbors if one 

one path. To generate a random neighbor, we randomly an 

,, 
a 

pau 

(u, t'), (u # v), genera te a random path bebNeen u and u and replace it in the routing R 

the actual path between 1.1 v1 . :"Jote that when ,,.e apply this procedure on one routing 

we obtain another solution, which is a routing. l. sing this neighbourhood structure. 1ve 

assure that every solution is reachable from every other. 

a first glance, we can consider the cost function of the algorithm to the fonYarding 

1 For the case of the forwarding index by routing of shortest paths, R is a routing of shortest paths and 
a random shortest path is generated between u and v 



index ~(G, R) as defined in section l. But this consideration have a serious drawback. 

The function ~(G, R) returns the maximum of a list of values, i.e the load of each node 

of Let Rx and Ry two routings of the same graph G such that ~(G, Rx) = ~(G, Ry)· 

In one extreme, the load of each vertex v in the routing Rx may be the same that the 

load of v in Ry· the other extreme, the load of each vertex v in each routing may be 

different, except by the vertex with maximum load. In either case, the function ~( G, R) 

reports solutions Rx and Ry to "be the same". This lack of differenciability result 

troublesome for the annealing process: we have the undesirable situation of large plateau­

like areas in which changes will be accepted freely, and the algorithm is likely to wander 

around aimlessly with no guidance toward improved solutions. 

To overcome this situation, we propose a different cost function that takes advantage of 

this differenciability. The cost is no more a number but a n-tuple where the ith position 

corresponds to the value ~( G, R, vi), that is, the load of vertex vi respect to the routing R. 

To compute .6, we first sort both costs e and e', from larger to smaller load, and then 

perform a lexicographic comparision. If the costs are lexicographically equals, is O. In the 

other case, let p the position where the first difference ocurred; is the difference between 

the load in the pth position of d and the load in the pth position of c. 

Note that if a solution R is mínimum respect to this cost function, R is also mínimum 

respect to ~(G, R). 
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para meter val u e 

II\ITPROB 0.85 
FREEZELIM 100 
SIZEFACTOR 5 
CUTOFF 5 
TEMPFACTOR 0.975 
MINPERCENT 0.05 
To ::::::::5 

Table 1: Parameter values used to perform the experiments. 

4 Experimental results 

We study the behavior of the algorithm for three graph families, whose forwardíng índex 

are known: the cycle Cn of order n, the wheel Wn of order n + 1 and the hypercube Qp of 

order 'J.P. 

Table 1 lists the parameter Yalues used to perform the experiments. The value of N is 

determined using the formula 20 · n where n is the graph order. (See [6] for observations 

about the values for these parameters and the interactions between them). 

Table 2 shows the experimental results obtained from executing the algorithm using 

differents graphs, computing ~( G) and ~m ( G) .2 Table presents the optimal theoretical values 

and the best values found by the algorithm ( denoted by t( G) and tm( G)). 

The solutions found are optimaL or very close to optimal (with a maximum error of 4%). 

In the cases \Yhere no optimal solution is known, we obtained an improvement in the upper 

bound of aproximately 25%. 

2 The algorithm was implemented in C++ and ran on a PEI\TI"CM 100.'v1Hz based computer under LINUX 
operating system 
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1 G 11 ((G) 1 t(G) 11 (m(G) 1 tm(G) 1 

Cs 9 9 9 9 
c12 25 25 25 25 
C2o 81 81 81 81 
C4o 361 363 361 362 
vv6 [3,4] 3 6 6 
W10 [7,16] 12 50 50 
VV12 [9,25] 19 84 84 
W2o [16,81] 61 300 300 
Q3 5 5 5 5 
Q4 17 17 17 
Qs 49 51 49 

Table 2: Experimental results. ((G) and (m(G) columns list the theoretical values. t(G) 
and tm ( G) colurnns list the val u es computed the algorithm. 

5 Experimental co:triparision with a genetic algorithn1. 

This section compares the performance of our algorithm with a genetic algorithm suited to 

salve the same problern. For this, we programrned a genetic algorithm according to Barráez 

and Domínguez [3]. Both prograrns share the sarne data structures and low-level routines. 

programs are based on heuristic algorithms, our principal concern is to eval-

uate how the solution evolves over the time. For this, we ran both programs with some 

graphs and tracked the values of the best solution. The results obtained are showed in fig-

ure 2. In each chart, the x-axis represents the execution time of the program; the y-axis 

value asociated to each x-axis value is the forwardíng index of the best solution obtained so 

far. 

the genetic algorithm behaves or slightly better 

than at same 
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Figure 2: Experimental comparision a genetic algorithm. For each 
best solution obtained so far by the simulated annealing algorithm (S A.) and 
algorithm .A.) 

speed. But there 1s a point the simulated annealing algorithm solution starts to 

improve significatively faster than genetic algorithm one, whose con·Fergence 

the same. This results experimentaly show that our algorithm performs the 

genetic algorithm. 

6 

have presented a simulated annealing algorithm for the forwarding index problem. 

periments shü\\' the algorithm behaves welL finding optimal or very close to optimal 



m sorne cases improving upper bounds in otherso The algorithm peforms better than 

a genetic one, suited to solve the same problemo 

A number of issues that we'd like to address in the future are uses of this algorithm in 

other types forwarding index problems, like the forwarding diameter [8] and the edge-

forwarding 
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